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Abstract
Inorganic nanoporous materials with highly accessible pores are of great interest for the design
of efficient catalytic, purification and detection systems. Limited access to the pores is a common
problem associated with traditional approaches for the synthesis of porous materials, affecting
the functionality of the low-density structure. Recently, infiltration of a nanoporous polymer
template with inorganic precursors followed by oxidative annealing was proposed as a new and
efficient approach to creating porous inorganic structures with controlled thickness, composition
and pore sizes. Here, we report an ultra-high accessibility of the pores in porous films prepared
via polymer-swelling-assisted sequential infiltration synthesis (SIS). Using a quartz crystal
microbalance technique, we show the increased solvent adsorbing capabilities of highly porous
alumina films as a result of high interconnectivity of the pores in such structures. The
directionality and highly interconnected nature of the pores are demonstrated in experiments
with the partial blocking of pore access by the deposition of a single-layer graphene that is not
transparent to solvent. 60% of the pores remain accessible when only 20% of the surface is
exposed to solvent. Using humidity detection as an example, we also show that highly porous
alumina produced by polymer-swelling-assisted SIS is a promising candidate for sensing
applications.

Supplementary material for this article is available online

Keywords: porous alumina, water adsorption, humidity sensing, pores interconnectivity,
graphene

(Some figures may appear in colour only in the online journal)

1. Introduction

Highly porous inorganic materials are of great interest for a
broad range of applications, from optical coatings [1, 2] to cat-
alysts [3–5], sensors [6, 7], and purification/separation systems
[8]. Many of these applications benefit greatly from the acces-
sibility of all pores for liquid or gas penetration [9]. The most

common porous materials are zeolites [5, 8], oxides prepared by
anodization of the corresponding metal [3, 10, 11] and ceramics
prepared by a gel-casting process [12, 13]. Each class of porous
materials has its own advantages and concerns. For example, the
use of highly porous natural and artificial zeolites has a tre-
mendous impact on technologically important processes such as
catalytic reactions, ion exchange, and filtration. However, most
of the zeolites have confined pores of a few atoms (∼sub-
nanometer in diameter) [5, 8]; this is associated with
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intracrystalline molecular transport limitations, resulting in low
utilization of the zeolite active volume [4, 14, 15]. Pore struc-
tures prepared by anodization of corresponding metals [16–18]
reveal pronounced directionality of the pores that can limit the
access of media from their sides [3, 10, 11]. In turn, ceramics
prepared by a gel-casting approach have randomly distributed
nanosized pores formed as a result of the sintering of the indi-
vidual small nanoparticles during synthesis [12, 13]. However,
some pores cannot be accessed. Even though the introduction of
sacrificial inclusions (e.g. carbon, etc) resulting in additional
porosity at the expense formation of larger pores (�300 nm)
improves the accessibility of nanopores [12], a fraction of them
still remain unavailable.

Previously, sequential infiltration of the block-copolymer
template with inorganic precursors using sequential infiltra-
tion synthesis (SIS) was proposed as a new technique for
patterning ceramics with a nanosize resolution [19–23]. Ori-
ginally, SIS allowed the synthesis of conformal coatings with
thickness limitations dictated by the infiltration depth of the
block polymer template (typically 40–50 nm). Recently, we
demonstrated that the thickness can be substantially increased
by introducing a swelling-of-the-polymer step [22, 23] that
enables precise control of the dimensions and porosity of the
resulting nanoporous alumina structures [23].

Here, we report on high accessibility and inter-
connectivity of the pores in nanoporous alumina films syn-
thesized with polymer-swelling-assisted SIS [23]. Prompt
estimation of the accessibility of the pores in porous struc-
tures without a need to synthesize large volumes of materials
is critically important for rapid performance optimization and
discovery of new materials in a cost- and time-efficient
manner. We implement a quartz crystal microbalance (QCM)
technique for analysis of the solvent penetration character-
istics of ∼200 nm thick nanoporous alumina films. Monitor-
ing the change in the resonant frequency and mechanical
resistance response of the QCM crystal with the deposited
material upon exposure to different environments shows that
highly porous (∼70%) alumina films consist of highly inter-
connected pores. High accessibility of the pores in SIS-
developed alumina, as confirmed by the experiment on
blocking surface pore access using single-layer graphene,
enables almost immediate water and acetone adsorption and
leads to good performance of the material for humidity
sensing.

2. Experimental procedure

2.1. Synthesis of nanoporous alumina films

Nanoporous alumina films were obtained via the SIS
approach that is based on vapor phase infiltration of a swollen
polystyrene-b-poly-2-vinyl pyridine (PS-p2VP) block-copo-
lymer template, where the polar part of the polymer film acts
as a selective site for the reactions to proceed [22, 23].
Briefly, titanium QCM electrodes were covered with PS-
p2VP films with 1:2, 1:1, and 2:1 concentration ratios for
polar and non-polar parts using spin-coating of the 3 wt%

concentration of the polymers in toluene. After swelling of the
polymers in ethanol (1 h at 75 °C), the films were exposed to
subsequent cycling of trimethylaluminum (TMA) and water
vapors resulting in selective infiltration of alumina inside the
polar domains of the polymer, thus replicating a polymer
structure. Specifically, the SIS was performed in the Cam-
bridge Nanotech Inc. ALD system at 90 °C to avoid melting
of swelling-formed predefined polymer structures. QCM
substrates with polymer films were loaded on a stainless steel
tray and kept at 100 sccm nitrogen flow for 30 min prior to
deposition. One cycle of SIS was performed as follows:
10 mTorr of the TMA precursor was admitted with 20 sccm
nitrogen flow into the reactor for 400 s; after the pre-
determined time when the infiltration of the polymer occurs
the excess reactant was evacuated after which 10 mTorr of
H2O was admitted for 120 s; the chamber was then purged
with 100 sccm of nitrogen to remove not-infiltrated bypro-
ducts. In total, 10 cycles of SIS were used to ensure full
infiltration of the polymers with aluminum oxide. After
infiltration, the polymer template was removed by a pro-
longed UV ozone cleaning technique (8 h), leaving nano-
porous aluminum oxide films on the QCM surface. The
samples were treated inside the UV ozone cleaner
(UVOCST16x16 OES, 254 nm UV wavelength) for 24 h at
room temperature. UV ozone was used instead of the pre-
viously reported thermal annealing-based removal of the
polymer to prevent damage to the quartz crystals at high
temperature. Complete removal of the polymer was confirmed
with energy dispersive x-ray spectroscopy analysis (see sup-
porting information, figure S1 is available online at stacks.
iop.org/NANO/29/495703/mmedia).

2.2. Blocking porosity with graphene

Chemical vapor deposition (CVD) grown on copper foil
single-layer graphene (Graphenea Inc.) was transferred onto
the QCM surface coated with porous alumina using a wet
chemistry transfer method [24]. The graphene was covered
with a spin-coated 200 nm thick poly(methyl methacrylate)
(PMMA) film. Then, the copper was etched in a copper
etchant, and the resulting graphene with the PMMA film on
top was transferred onto the QCM surface. The PMMA was
removed with a warm acetone bath. During the transfer,
encapsulation of the water in the pores and its evaporation
during baking of the sample at 90 °C resulted in graphene
rupture in multiple places. Complete removal of the PMMA
layer and the single-layer nature of the graphene film were
confirmed using scanning electron microscopy (SEM) and
Raman spectroscopy with a 534 nm green laser. Overall, the
procedure led to about 80% coverage of graphene film on top
of the nanoporous alumina.

2.3. QCM analysis

The adsorption characteristics of the porous alumina were ana-
lyzed using the QCM technique by immersing the deposited
QCM surface porous structure into the solvent (water and
acetone). The QCM, made of an AT-cut piezoelectric quartz
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crystal oscillating in a shear mode, reproduces in frequency and
resistance change the response of the modification in the surface
during sliding. AT-cut crystals (1 inch in diameter) oscillating in
a shear mode with 5MHz resonance frequency were chosen for
the study. Titanium- and aluminum-coated QCMs were pur-
chased from Fil-Tech. Changes in resonant frequency and
mechanical resistance of QCM oscillations upon immersing in
liquids, more viscous water, and less viscous acetone, were
monitored using an SRS QCM 200 system.

In the classic approach for evaluating QCM frequency
change under applied load, ideally a mooth surface of the
QCM is assumed [25]:

D = - r h
pm r

( )/f f 10
3 2 L L

q q

where f0 is the fundamental frequency of the QCM, ρq=
2.648 g cm−3 is the density of quartz, μq=2.947×
1011 gcm−1 s−2 is the shear modulus of quartz and ρL, and
ηL are the density and viscosity of the liquid, respectively. In
the case of a QCM immersed in water, ρL=0.9982 g cm−3

and ηL=0.01 g cm−1 s−1. In the case of a QCM immersed in
acetone, ρL=0.784 g cm−3 and ηL=0.003 g cm−1 s−1.
Substituting density and viscosity values gives an estimate of
the expected frequency shifts upon immersing in water and
acetone to be 700 Hz and 360 Hz, respectively.

The mechanical resistance of the QCM measured in
ohms is the resistance to be added to the oscillator circuit to
sustain stable QCM oscillation [26]. For a QCM with an ideal
smooth surface immersed in liquid, the mechanical resistance
can be calculated as [27]:

D = p r h
m r

( ) ( )R fL2 2u
f4 L L

q q

where Lu is inductance for the dry resonator. Expected
mechanical resistance values are 320 and 160Ω, respectively.

2.4. Characterization

Porosity and thickness values of the deposited alumina coatings
were estimated from ellipsometry data (figure S2, SI), obtained
with an M-2000V ellipsometer. Alumina thickness and porosity
were estimated as ∼200 nm and∼70%, 45%, and 30% for three
different polymers respectively. The samples were further
characterized using an FEI Nova Scanning Electron Microscope
(SEM) with energy dispersion x-ray analysis to confirm com-
plete removal of the polymer template and alumina composition
of the porous structure (figure S1, SI). Transmission electron
microscopy (TEM) was conducted using the JEOL2100F
instrument. The alumina was scratched from the substrate and
suspended in acetone. Next, a drop of this suspension was
deposited onto the carbon coated copper mesh grid and dried.
Contact angle measurements were conducted by the sessile
water drop method using a ramé-hart 250 contact angle goni-
ometer. Contact angle data were averaged based on five mea-
surements for each sample. X-ray photoemission spectroscopy
(XPS) analysis was performed with a PHI 5000 Versaprobe
Scanning X-ray Spectrometer (figure S3, SI).

3. Results and discussion

Polymer-swelling-assisted SIS of the PS-p2VP block copo-
lymer resulted in the formation of the conformal alumina
coating. Figures 1(a)–(c) present SEM images of the resulting
nanoporous alumina films with different porosity. The TEM
image in figure 1(d) and the electron diffraction pattern in
figure 1(d) inset reveal the amorphous nature of the porous
alumina. Nanoporous alumina films were grown directly on
the QCM titanium surface (figures 1(e) and (f)).

Water and acetone penetration of the nanoporous alumina
films deposited on the QCM surface was tested by immersing
the QCM surface into corresponding solvents. Our results
demonstrate a more substantial drop in resonant frequency and
increase in mechanical resistance than calculated based on
equations (1) and (2) for all three samples, which assume (i)
distinguishable interface between QCM and liquid and (ii) water
adsorption inside the material (figure 2). Thus, in the case of
porous materials, penetration of the solvent inside the structure
affects the measurements, requiring the modification of
equations (1) and (2). We do take into account that when trapped
water is trapped for the lateral movement, the penetrating water
will act as an additional mass for the QCM response [27]. In this
case, equation (1) can be modified to:

d
r m

= - - Dr h
pm r

/f f
f

A
m

2
,

q q

3 2
2

L L

q q

where Δm is the mass of water trapped inside the structure, and
A is the effective surface area of the added mass. In our case,
assuming that water fills 70%, 45%, and 30% of the 200 nm
thick alumina film, the expected additional changes in frequency
due to the added mass of water are ∼800 Hz, ∼510 Hz, and
∼340Hz; in the case of an added mass of acetone the frequency
shifts are∼620 Hz, ∼400 Hz, and ∼260Hz. Thus, QCM allows
us to assess the efficiency of liquid adsorption inside the porous
structure. The resulting water filling capacities based on the
QCM are in good agreement with the measured porosity values
for all three films. This indicates that polymer-swelling-assisted
SIS allows a high degree of water adsorption inside the porous
structures.

Note that the effective volume of pores filled with solvent
gradually decreases with decreasing porosity. This is attrib-
uted to the loss of interconnectivity of the pores and the
presence of closed pores not accessible for water and acetone.
Therefore, we focus further on the analysis of the highly
porous alumina film, with 70% porosity, and the approaches
for controlling the water penetration inside it.

The effect of the amount of adsorbed water on oscillating
frequency was further confirmed experimentally with partially
blocked pores (figures 3(a) and (b)), in which we covered a
fraction of the porous surface with single-layer graphene, which
is recognized as a hydrophobic material [28]. Figures 3(c) and
(d) represent schematically the water-filling capacity of the
uncoated and graphene-coated porous alumina. The experiment
on alumina partially coated with graphene was conducted to
probe the connectivity and directionality of the pores.

3

Nanotechnology 29 (2018) 495703 Y She et al



Figure 1. SEM images of the porous alumina films with (a) 70% porosity, (b) 45% porosity, and (c) 30% porosity. (d) HRTEM image and
electron diffraction (inset) obtained from a fragment of porous alumina (70% porosity); (e) depiction of the QCM experiment; (f) schematic
of the nanoporous alumina film on the substrate.

Figure 2. Change in resonant frequency of the nanoporous alumina-coated QCM with (a) 70%, (b) 45%, and (c) 30% porosity. (d) Summary
of the frequency shift values and estimates for the effective volume of pores filled with solvent.

4
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Suspended graphene was reported to be non-transparent for
water molecules [29]. As a result, water can enter the structure
only via unprotected area of alumina. Note that after deposition
of the graphene, all samples were baked at 90 °C and tested
within a day to eliminate the effect of graphene contamination
that can affect wettability properties [30–32]. If penetration of
the solvent into pores results in such a high shift in frequency,
blocking the pores should also be detectable through the
change in the QCM response. Indeed, as indicated in figure 1,
graphene coating enabled lowering of the observed shifts both
in resonant frequency and mechanical resistance towards the
theoretically expected values. When a single-layer of graphene
covered ∼80% of the geometrical surface of porous alumina,
the effective volume of the pores field with solvents is esti-
mated to be∼60% (table 1). This indicates that even though the
pores have directionality, they are highly interconnected.
Table 1 summarizes the observed results and summarizes the
filling capacity of the nanoporous alumina film without and
with graphene. Note, that a similar trend is observed for both
water and acetone.

Penetration of the solvent inside the pores also affects the
mechanical resistance change of the QCM surface. Equation (2)

assumes that a well-defined interface between the QCM and
liquid acts as a liquid coupling line. In this case, the interfacial
velocity of the liquid equals the velocity of the oscillating QCM
surface and decays to zero when moving away from the surface.
In case of the porous structure, the liquid/QCM interface is
widened to the thickness of the porous film (∼200 nm), thereby
leading to partial coupling/partial slippage of the water inside
[33]. Only the porous surface velocity of the liquid decays as
would be expected. The surface area of the porous alumina is
estimated to be ∼200m2 per gram of material. The estimation is
made based on the the water adsorption inside the 200 nm thick
alumina films with available pores of a characteristic size of
∼20 nm (figure 1).

Interestingly, once the sample is removed from the water,
the area covered by graphene dries out immediately, while the
area without graphene, where bare nanoporous alumina was
exposed to water, keeps water trapped inside (figure 4). Our
results demonstrate that porous alumina is very hydrophilic,
not only leading to the low water contact angle of 33.1°±1.7°,
but also resulting in water residue upon removing the sample
from the liquid (figure 4(a) highlights the presence of water
droplets on the surface not covered with graphene. Note that

Figure 3. Change in (a) resonant frequency and (b) mechanical resistance of the nanoporous alumina (70% porosity) coated QCM upon
immersion in water and acetone without and with graphene film on top. Schematics of the water penetration in (c) nanoporous alumina and in
(d) graphene with defects on nanoporous alumina.
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the water contact angle for the bulk alumina was reported to
be in the range of 80° to 90° [34]. Our results demonstrate a
significant increase in hydrophilicity of porous alumina as
compared to its bulk analogs [34] as well as to solid crys-
talline alumina film deposited by 200 atomic layer deposition
(ALD) cycles following the regular ALD procedure [35]
(figure 5(a)). This observation can be attributed to increased
hydrophilicity of the surface, allowing the porous alumina
structure to act as a sponge, highly adsorbing the liquid and,
in turn, lowering the water contact angle.

Surprisingly, the water contact angle on the deposited
single-layer graphene is significantly higher than that of bare
porous alumina (78.8°±1.5°). At first glance, in this case the
high contact angle is somewhat expected given the known
hydrophobicity [28] of graphene. However, previously,
Rafiee et al reported water transparency of the graphene for
surfaces interacting with water by van der Waals interactions
[36]. The value of water contact angle on single-layer gra-
phene was nearly the same as on the solid graphene support,
and supported graphene reveals its own water contact angle
only when its thickness exceeds 6 monolayers [36]. Our
results indicate that porous support does not significantly

impact the wettability of single-layer graphene, probably as a
result of the small number of interfacial contacts between
porous alumina and graphene. Also, our results support the
previously reported data that the wettability of graphene is
determined mainly by short-range graphene–liquid interac-
tions since about 80% of the long-range water–substrate
interactions are screened by the graphene monolayer [37].

In control experiments with uncoated and single-layer
graphene-coated nonporous alumina-coated QCMs obtained
by 200 ALD cycles, we obtained water contact angles of
84.6°±1.7° and 83.2°±1.5°, respectively (figure 5). These
values are similar to those of solid alumina surfaces [34] and
single-layer graphene deposited onto lithographically nano-
textured surfaces [37], respectively. The resulting frequency
and mechanical resistance changes are in accordance with
theoretically predicted values and only a slight modification
can be attributed to roughness and contamination effects.
When graphene is deposited on top of nonporous alumina, the
differences in both frequency and resistance are minimal and
can be attributed to residual contamination of graphene on the
edges of the sample, acting possibly as an additional water
trapping region [38, 39].

Figure 4. (a) Photo of the graphene-coated nanoporous alumina QCM surface immediately after its removal from water. Residual water
droplets in the areas of graphene tearing (non-graphene covered alumina) are observed. The false color inset highlights the areas representing
graphene (brown), bare alumina (gray) and residual water (purple). Water contact angle measurements for (b) porous alumina and (c)
graphene on top of porous alumina are presented to demonstrate graphene coverage preventing water penetration. (d) SEM image of
the graphene on a nanoporous alumina surface indicates high contrast of the edge area with (e) Raman spectrum confirming a single layer of
graphene.

Table 1. Comparison of viscosity and added mass effects on the resonant frequency change of the porous alumina-coated QCM upon
immersion in water and acetone without and with graphene. The effective volume of pores is calculated by normalization of the weight of the
adsorbed water by the total volume estimated for 200 nm thick alumina with 70% porosity.

Sample (70% porosity) Viscosity effect (Hz) Liquid in pores effect (Hz) Effective volume of pores filled with solvent, %

Al2O3 in water −715 −780 98%
Al2O3 in acetone −360 −580 94%
Gr/Al2O3 in water −715 −480 60%
Gr/Al2O3 in acetone −360 −400 64%
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Alumina is widely recognized as a promising material for
monitoring humidity [40–42]. Since alumina prepared via SIS
is highly porous and its surface is hydrophilic enabling rapid
infiltration of its pores by water, we tested its ability to sense
humidity at atmospheric pressure and room temperature using
the QCM technique. Figure 6 summarizes QCM resonant
frequency change when the system is inserted into a vacuum
chamber and humidity is introduced gradually in the form of
water vapor. Adsorption of water vapors on the surface of the
nanoporous structure of the QCM results in a significant
change in resonant frequency response when exposed to low
relative humidity values; in contrast, solid alumina films
obtained by 200 ALD cycles do not respond to small
humidity variation. Similar contrast difference for bulk and
porous structures has already been explored by Lazarovich
et al [42]. Previously, 13 μm thick nanoporous alumina films
produced by anodizing the bulk QCM electrode material were
used to sense the presence of the water vapors [42]. Here, we
demonstrate the high sensitivity of 200 nm thick nanoporous

alumina films, attributed to the interconnectivity of the pores
in SIS-produced alumina films. After normalization by the
thickness, the alumina prepared by polymer-swelling-assisted
SIS reveals 7 times higher sensitivity toward the water than
porous alumina prepared by anodization.

Previous studies indicated that the wetting characteristics
of the surfaces are affected by the surface roughness profile
and surface energy. When the surface energy of the material is
higher than that of water, water wets the surface more easily
[44, 45]. Oxygenation of the surfaces was reported to increase
the surface energy of materials [46, 47]. The XPS analysis of
the survey scans for bulk and porous alumina surfaces indi-
cates a higher concentration of oxygen in case of the porous
film (figures 6(b) and (d)). We attribute such a variation in the
oxygen concentration to the amorphous nature of the porous
alumina developed by SIS which allows the higher presence
of oxygen groups in the defect sites. The increased roughness
profile of nanoporous alumina is an additional contributor to
the material’s hydrophilicity with the contact angle of the

Figure 5. Water contact angle measurements for (a) solid alumina film grown by 200 ALD cycles and (b) graphene on solid alumina film
grown by 200 ALD cycles. QCM monitoring of the (c) delta frequency change and (d) resistance change upon immersion in water. A slight
change in frequency is attributed to the presence of tearing in graphene leading to a small amount of water encapsulation on the surface.
Small variations in the figures for bulk alumina and for porous alumina are attributed to partial defects in the graphene film.
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smooth surface being less than 90° [48]. The combined effect
of the surface roughness increase and surface energy increase
of the nanoporous alumina surface thus results in excellent
wetting characteristics of SIS-developed materials and causes
the high efficiency of water adsorption and penetration in the
pores.

4. Conclusions

Here we report on high wetting and solvent adsorption char-
acteristics of porous alumina developed by the polymer-
swelling-assisted infiltration technique. Using an ultra-sensitive
QCM approach we explored the accessibility of the pores for
water and acetone penetration. The estimated surface area
of the resulting nanoporous alumina structures is 200 m2

per gram of material. We also show that pores are highly
interconnected, and even blocking of ∼80% of the porous
surface by a single-layer graphene film still allows solvent
penetration in ∼60% of all available pore volume. Since the
SIS approach is compatible with a broad range of surfaces, the
highly porous coating can be deposited onto the surface
of a QCM to allow for probing the kinetics of solvent infil-
tration with high sensitivity. Using humidity detection as an
example, we demonstrated that polymer-swelling-assisted SIS

is a promising approach for designing materials for sensing
applications.
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