Swelling-Assisted Sequential Infiltration Synthesis of Nanoporous ZnO Films with Highly Accessible Pores and Their Sensing Potential for Ethanol

Daniel Pleshek, John Tran, Yuzhe Li, Asghar Shirani, Elena V. Shevchenko,* and Diana Berman*

Cite This: ACS Appl. Mater. Interfaces 2021, 13, 35941−35948

ABSTRACT: Here, we report a swelling-assisted sequential infiltration synthesis (SIS) approach for the design of highly porous zinc oxide (ZnO) films by infiltration of block copolymer templates such as polystyrene-block-polyvinyl pyridine with inorganic precursors followed by UV ozone-assisted removal of the polymer template. We show that porous ZnO coatings with the thickness in the range between 140 and 420 nm can be obtained using only five cycles of SIS. The pores in ZnO fabricated via swelling-assisted SIS are highly accessible, and up to 98% of pores are available for solvent penetration. The XPS data indicate that the surface of nanoporous ZnO films is terminated with −OH groups. Density functional theory calculations show a lower energy barrier for ethanol-induced release of the oxygen restricted depletion layer in the case of the presence of −OH groups at the ZnO surface, and hence, it can lead to higher sensitivity in sensing of ethanol. We monitored the response of ZnO porous coatings with different thicknesses and porosities to ethanol vapors using combined mass-based and chemiresistive approaches at room temperature and 90 °C. The porous ZnO conformal coatings reveal a promising sensitivity toward detection of ethanol at low temperatures. Our results suggest the excellent potential of the SIS approach for the design of conformal ZnO coatings with controlled porosity, thickness, and composition that can be adapted for sensing applications.

KEYWORDS: nanoporous zinc oxide, ZnO, sequential infiltration synthesis, quartz crystal microbalance, ethanol sensing, chemiresistivity, block copolymer, low-temperature sensitivity

1. INTRODUCTION

The urge for clean air, preservation of the environment, and non-invasive diagnostics emphasize the importance of analytical systems capable of selective and sensitive analysis of gases in industrial, residential, and medical settings. Metal oxide semiconductors are widely used as major sensing components for the detection of various gas molecules with good selectivity and fast and high response signals. Detection of gases in such sensors is based on the changes in mass or electrical or electrochemical properties of the metal oxide upon coming in contact with the sensed species. The sensing layer based on metal oxide semiconductor materials is usually fabricated in a form of a film. Such films can be deposited either from chemically synthesized nanoparticles via dip coating, sol-gel processing, and hydrothermal synthesis, or directly by chemical vapor deposition, RF magnetron sputtering, electrosprinning, angle deposition, molecular beam epitaxy, metal-organic chemical vapor deposition, or atomic layer deposition (ALD). Among other metal oxides, zinc oxide (ZnO) offers very high thermal and chemical stability that makes it one of the most frequently used material systems in gas sensors. However, chemiresistive ZnO-based gas sensors generally require the heating of the sensing layer to a high temperature (200−500 °C), leading to high energy consumption and changes in the nanomaterial microstructure. While despite the long history of the practical application of ZnO for sensing of ethanol, acetone, etc., the mechanism responsible for the change in resistivity in chemiresistive ZnO is still under debate, it is generally accepted that high temperature is needed to displace the chemisorbed molecules of oxygen and oxidize ethanol. Multiple efforts have been explored to lower the operating temperature requirements. Among them, doping of ZnO and its interfacing with different materials are the most common approaches. ZnO is also used as a sensing layer in adsorption/absorption mass-based sensors that can
operate at room temperature but is less cost-efficient as compared to chemiresistive sensors.

Improvement in the gas sensing sensitivity is usually associated with high surface area availability. Nanostructured materials with a high surface area characterized by enhanced gas sensing properties and hence fabrication of nanostructured (e.g., nanoporous) conformal coatings are critical for further progress in the design of sensing materials both for chemiresistive and mass-based sensors. Here, we report that highly porous ZnO uniform conformal coatings with controlled porosity and thickness and uniformity can be synthesized by infiltration of the block copolymer (BCP) matrix via sequential infiltration synthesis (SIS). We probe the ethanol sensing capabilities of the resulting films by comparing the quartz crystal microbalance (QCM) adsorption results to the resulting changes in the electrical conductance of the materials at room temperature and 90 °C. Our results demonstrate the high sensitivity of the films to the reducing environment of ethanol, even at low temperatures, thus suggesting the excellent potential of SIS-designed ZnO for sensing applications.

2. EXPERIMENTAL DETAILS

2.1. Polymer Template Preparation. The samples of nanoporous ZnO films with different porosities and thicknesses were synthesized using a swelling-assisted SIS approach. Polystyrene-block-polyvinyl pyridine (PS-b-P4VP) polymer powders with molar weights 75k-b-25k and 25k-b-25k were purchased from Polymer Source Inc. The powders were dissolved in toluene at a concentration of 3 wt %. The resulting polymer solutions were filtered through 0.4 and 0.2 μm sized filters to remove residual large agglomerates. Polymer solutions were spin-coated on silicon dioxide wafers (300 nm thick SiO2 on Si, 10 mm square samples) or AT-cut QCM crystals (1 in. in diameter with resonant frequency ~5 MHz, purchased from Fil-Tech) with SiO2-coated electrodes. A silicon dioxide substrate was used to eliminate surface contribution to conductivity, while ZnO enabled the silicon dioxide substrate without the polymer template and using the silicon dioxide substrate as a carbon mesh TEM grid was performed using a JEOL 2100F transmission electron microscope. Chemical modifications of the polymer templates during infiltration were performed as follows: the DEZ precursor was introduced into the reactor with resonant frequency that is directly proportional to the added mass.

\[\Delta f = \frac{-2f^2}{A \sqrt{\mu \rho_q \Delta m}} \]

where \(f \) is the frequency of oscillation of the unloaded crystal, \(\rho_q \) is the density of quartz (2.648 g cm\(^{-3}\)), \(\mu \) is the shear modulus of quartz (2.947 \times 10\(^{10}\) g cm\(^{-1}\) s\(^{-2}\)), \(A \) is the QCM surface area, and \(\Delta m \) is the mass change.

Changes in the electrical conductivity of the sample deposited on the silicon dioxide wafer and in the QCM resonance frequency of the sample deposited on the QCM substrate were performed simultaneously for direct correlation. All of the measurements were repeated at least three times upon introducing the ethanol vapors and evacuating the chamber. A similar analysis has been performed using water, acetone, and toluene vapors.

2.2. Swelling-Assisted SIS. Swelling of the polymers before the SIS process was performed to enable better full-thickness diffusion of the inorganic vapors and to introduce additional functional groups for the infiltration. Swelling was performed in ethanol, being selective to polar vinyl pyridine domains of the BCP, at 75 °C for 1 h. After 1 h, the samples were carefully removed from ethanol and dried at room temperature in a fume hood for at least 2–3 h. The drying step was performed at room temperature to prevent the collapse of the swelling-introduced porosity in the polymers.

2.3. Vapor-Phase Infiltration. Infiltration of ZnO in the polymer was performed using SIS in an ALD system (Cambridge ALD system). The recipe for the infiltration was adapted from the previously reported aluminum oxide infiltration with the trimethylalumina (DEZ) precursor. The samples were placed on a stainless steel tray inside the ALD chamber at 90 °C to avoid melting of swelling-formed predefined polymer structures. Nitrogen flow (100 scm) was introduced into the chamber for 30 min prior to the infiltration. Five cycles of the ZnO infiltration were performed as follows: the DEZ precursor was introduced at 10 mTorr with 20 scm nitrogen flow into the reactor for 400 s; after the predetermined time, when the infiltration of the polymer occurred, the excess reactant was evacuated following the introduction of H₂O at 10 mTorr for 120 s; the chamber was then purged with nitrogen at 100 scm to remove non-infiltrated byproducts. The bulk ZnO coating had been deposited directly on the silicon dioxide substrate without the polymer template and using 500 cycles of the regular ALD process.

2.4. Polymer Removal. After the infiltration, the polymer templates were removed by exposing the infiltrated samples to ultraviolet (UV) ozone (UVOCSS16 × 16 OES, 254 nm UV wavelength) for 10 h. Previously, this procedure was shown to be effective for polymer removal without the need to overheat the QCM substrates and thus to prevent their loss of sensitivity. The porosity of the resulting samples had been measured with spectroscopic ellipsometry to be 50% and 70% for PS25-b-P4VP25 and PS75-b-P4VP25 correspondingly similarly as in previous studies with SIS-synthesized nanoporous alumina.

2.5. QCM Analysis. The QCM technique was used for the quantitative analysis of the materials infiltration process as well as for sensing characterization. The changes in the resonant frequency and mechanical resistance of the QCM oscillations were monitored using a SRS QCM200 controller. For the analysis of infiltration steps, the readings of the QCM resonant frequency were stabilized for at least 1 h at room temperature (22 °C) in the ambient environment before recording the measurements. In sensing tests, the QCM setup was placed in a custom-built vacuum chamber connected to nitrogen gas and ethanol supply. The chamber also allows heating from the room temperature up to 90 °C. In the chamber, two samples, one deposited on the QCM and one deposited on the silicon dioxide substrate prepared using exactly the same sample preparation procedure, were connected to each other for simultaneous absorption and desorption. Sensitivity measurements were performed using the van der Paw method with four probes connected to the corners of the sample and resistance measurements performed using a 2401 Keithley Source Meter. The QCM sample had been exposed to the ethanol vapors introduced to the chamber at a rate of ~3 Torr min⁻¹ until the sample reached 4 Torr (monitored using a 275 Granville-Phillips Vacuum Gauge). The absorption capacity of the QCM samples was calculated based on the change in the QCM resonant frequency that is directly proportional to the added mass.

2.6. Characterization. Scanning electron microscopy (SEM) analysis was performed using a FEI Nova SEM. Transmission electron microscopy (TEM) analysis on the samples crushed and deposited on a carbon mesh TEM grid was performed using a JEOL 2100F transmission electron microscope. Chemical modifications of the polymer templates during infiltration were evaluated using a Nicolet 6700 Fourier transform infrared spectrometer (FTIR) with a 700–4000 cm⁻¹ spectral range. X-ray diffraction (XRD) analysis was performed using a Bruker D2 XRD with Cu Kα source of irradiation.
the surface. A vacuum layer of 20 Å was built to avoid interactions between periodic ZnO groups. K-point meshes were set up as 3 × 3 × 1 grids.

The potential for the ZnO affinity to ethanol was evaluated by calculating the adsorption energy of surface species during the different steps of the chemical reactions. The adsorption energy is defined as:

\[E_{\text{ads}} = E_{\text{total}} - E_{\text{surface}} - E_{\text{species}} \]

where \(E_{\text{total}} \) represents the total energy of adsorbed species on the ZnO surface, \(E_{\text{surface}} \) is the energy of the ZnO surface before the reaction step, and \(E_{\text{species}} \) is the energy of species in the gas phase. The resulting from the VASP calculations changes in the structure of the ethanol molecules adsorbed on the ZnO surface were visualized using the VESTA software.

3. RESULTS AND DISCUSSION

3.1. Swelling-Modified SIS of Porous ZnO Films.

Previous studies demonstrated that the synthesis of ZnO using infiltration of polymers via the SIS approach is possible only with the priming of the polymer template with the alumina layer.28 The major reason for this is the limited number of reactive sites in the BCP for the attachment of the DEZ molecules even if they diffuse through the nanodomains of the BCP films.29 However, it was shown that the residual processing solvent can mediate the infiltration of even nonreactive polymers with ZnO precursors.30 Our previous studies demonstrated improved infiltration of the BCP after the selective swelling in ethanol as a result of the increased number of reactive infiltration sites, thus suggesting the importance of the swelling step prior to the SIS.31,32 In addition, the swelling increases the porosity, enabling the synthesis of high-surface-area films.32 As in the case of alumina, we also observed that swelling of the BCP template allowed a significant increase in the infiltration efficiency of the BCP with ZnO precursors. In this study, we explored the swelling of the BCPs with a different contribution of polar domains such as PS25-b-P4VP25 and PS75-b-P4VP25. Figure 1a depicts the major steps involved in porous ZnO coatings via SIS using swollen BCP templates such as (i) deposition of the BCP layer via spin-coating, (ii) swelling of the deposited BCP in ethanol for 1 h at 75 °C, (iii) infiltration of swollen BCP with ZnO precursors by cycling the exposure of template to DEZ and H2O, and (iv) formation of all-inorganic porous ZnO by polymer removal. The polymer can be removed by thermal annealing or ozone cleaning.33 In this study, we implemented ozone cleaning since prepared QCM samples cannot be heated up to 450 °C required for the complete removal of organics.

QCM analysis (Figure 1b) of BCP templates of varied thicknesses spin-coated on the QCM substrates was used to monitor the mass changes introduced during different steps of the synthesis of porous ZnO conformal coatings. In the case of alumina, the SIS infiltration mass increase has been reported to be directly proportional to the mass of P4VP domains in PS-b-P4VP.34 However, in the case of ZnO, the QCM data suggest that the swelling-induced reactive sites are not present in the entire volume of the polar domains since we did not observe a direct correlation between the content of polar domains and mass change in studied PS-b-P4VP BCP templates (Figure 1b). Importantly, the swelling step is needed for improving the efficiency of the ZnO infiltration.

To unravel the binding events in the infiltration of the BCPs with ZnO precursors, we performed FTIR analysis of the PS25-b-P4VP25 BCP template after swelling and after infiltration relative to the initial BCP film spectrum (Figure 2a). The swelling in pure ethanol increases delta absorbance because of the CH bending of CH3 and CH2 groups at 1580, 1500, 1450, and 1410 cm−1.35 Analysis of the swollen BCP after the SIS step indicated that swelling creates major sites for infiltration with ZnO precursors. The contact angle measurements (Figure 2b) demonstrate that swelling makes the polymer surface more hydrophilic as evidenced from the
decrease of the contact angle of water droplets deposited at swollen BCP layers as compared to the initial BCP. In turn, infiltration of swollen BCP with ZnO precursors makes the surface more hydrophobic since the contact angle at the interface between the water droplet and infiltrated BCP increases. This observation indirectly confirms that sites capable of binding ZnO precursors were generated during swelling. Such modification of BCP enables the deposition of ZnO without the necessity of priming the polymer template with alumina.

After the successful ZnO infiltration, to create nanoporous ZnO structures (Figure 3), the polymer templates were removed by UV ozone cleaning that previously showed effectiveness in polymer removal. The SEM data indicate the overall uniformity of the porous ZnO coatings (Figure 3a,b) as a result of efficient nucleation and growth of inorganic clusters within the polymer domains that ensure the formation of continuous ZnO materials similarly to various SIS-synthesized structures observed previously. The electron diffraction analysis points out a good crystallinity of the synthesized ZnO coatings (Figure 3c), which is further supported by the XRD analysis (Figure S1). The XRD analysis indicates the estimated size of the crystalline domains to be ∼2 nm.

The accessibility of the pores was analyzed by monitoring the changes in the resonant frequency of the QCM oscillations upon immersing the samples in water (Figure 3d). We observed that the change in the frequency originated from both water trapping in the pores and the effect of the surrounding viscous medium as depicted by eq 3:

$$\Delta f = -f^{3/2} \frac{\rho_L \eta_L}{\pi \rho H} - \frac{2f^2}{A} \Delta m$$

(3)

where ρ_L and η_L are the density and viscosity of the liquid, respectively. In the case when QCM is immersed in water, ρ_L is 0.9982 g/cm3 and η_L is 0.01 g/(cm s). Since the infiltration with inorganic precursors takes place only in polar domains and assuming their full infiltration, we can roughly estimate that the porosities of final ZnO conformal coatings deposited using the PS25-b-P4VP25 and PS75-b-P4VP25 templates were 50% and ∼70%, respectively. Our QCM experiments indicated that ∼71% and ∼98% of pores were accessible to the solvent. This observation emphasizes the high interconnectivity of the pores in deposited ZnO conformal coatings (Figure 3). These data are in agreement with our previous data on porous alumina conformal coatings indicating that up to 98% of the pore volume is available for solvents and vapors.

The XPS data (Figure 3g) reveal that the “bulk” film is characterized only by one symmetric peak at 1020.8 eV that corresponds to Zn atoms in ZnO lattices of the bulk material. Meanwhile, the XPS spectrum of the porous ZnO films has the Zn 2p$_{3/2}$ peak shifted to the higher energy values with a maximum at 1022.3 eV, suggesting Zn$^{2+}$ coordination with OH...
To probe the reactivity of ZnO surfaces with ethanol, we performed DFT calculations (Figure 4). In the case of the ZnO surface terminated with OH groups (Figure 3h), the XPS O 1s spectrum of the porous ZnO film exhibits an asymmetric peak that can be fitted by two peaks with maximums at 531.2 and ~532 eV that correspond to O2− and OH− groups, respectively, while the XPS spectrum of “bulk” ZnO has the peak only at 531.2 eV. Therefore, the XPS analysis of porous ZnO films indicates the presence of a significantly higher concentration of OH groups on the surface of SIS ZnO as compared to ZnO prepared via traditional ALD (Figure 3).

To probe the reactivity of ZnO surfaces with ethanol, we performed DFT calculations (Figure 4). In the case of the ZnO surface terminated with OH groups, interaction with ethanol involves two OH groups:

\[
\text{base1} + \text{CH}_3\text{CH}_2\text{OH} = \text{base2} + \text{CH}_3\text{CHO} + \text{H}_2\text{O}
\]

\[
\text{base2} + \text{CH}_3\text{CHO} = \text{base3} + 2\text{CO}_2 + 3/2\text{H}_2
\]

where base 1 is the initial O-terminated ZnO structure, base 2 is the intermediate ZnO structure with ethanol being reduced to ethanal, and base 3 is the final ZnO structure with surface OH groups being released upon reaction with ethanol.

Indeed, the DFT calculation results for ZnO terminated with −OH groups (Figure 4) indicated a lower energy barrier for ethanol-induced release of the oxygen restricted depletion layer in the case of the presence of OH groups. Inspired by the presence of high concentrations of OH groups and high interconnectivity of the pores in porous ZnO films, we studied the ability of porous ZnO coatings to sense ethanol since ZnO has been previously reported to demonstrate promising performance for ethanol sensing.

3.2. Ethanol Sensing Using Nanoporous ZnO Films

An n-type semiconductor, ZnO, is one of the traditional materials used for demonstrating changes in electrical properties as a result of interfacial redox processes. The initial resistance of ZnO, which is an n-type semiconductor, is affected by the adsorption of oxygen from the air that leads to the formation of an electron depletion layer, increasing the surface resistance of ZnO. Upon introducing ethanol, acting as a reducing gas, removal of chemisorbed oxygen leads to the release of conduction band electrons and thus results in resistance decrease. Idriss suggested that in the presence of metal oxide, ethanol undergoes catalytically driven dehydration and dehydrogenation reactions, leading to the formation of gaseous CO\(_2\) and H\(_2\)O as the end products that were later detected by a carbon dioxide detector tube installed in the testing chamber by Shankar and Rayappan. It was also suggested that the presence of the hydroxyl groups, chemisorbed as a result of exposing the ZnO material to the humid environment, further promotes the surface reactivity with the ethanol vapor. As the SIS process leads to a higher surface concentration of OH groups, we expect that this can further enhance the sensitivity of the SIS-designed ZnO films to the ethanol vapors.

Here, we combined the QCM analysis with four-probe electrical conductivity monitoring upon exposure of the porous ZnO to ethanol vapors to get insights into structure–property correlations. For this, we designed a vacuum chamber that allowed us to measure the materials’ adsorption simultaneously with the changes in the electrical conductivity of the films (Figure 5a). To obtain quantitative estimations of the ethanol-caused changes in the material’s properties, we placed two identical samples, one on the QCM and one on the wafer, next to each other to enable the same exposure of both samples. After pumping down the chamber, the samples were exposed to ethanol introduced at a rate of ~3 Torr/min; 1 Torr corresponds to ~1.3×10\(^{-3}\) ppm (Supporting Information).

To probe the sensitivity of the samples to the ethanol exposure, we analysed the changes in the QCM frequency and electrical conductivity of the square samples at room temperature and 90 °C. Figure S5c,d summarizes the results from the tests performed for porous ZnO films synthesized using P525-b-P4VP25 and P575-b-P4VP25 templates at room and at 90 °C that are substantially lower than the temperatures previously reported in other studies that are typically in the 200–400 °C temperature range.

Figure 4. Summary of the DFT calculation results. (a) OH-terminated ZnO surface reacting with ethanol molecules and (b) ZnO surface without OH groups reacting with ethanol molecules. (c) Adsorption energy calculations indicate higher preference for the reaction with ethanol to proceed in the case of the OH-terminated surface of ZnO.
We further analyze the measured changes in the QCM resonant frequency to characterize the ethanol absorption efficiency of the nanoporous ZnO films. In a simple model, we assume that ethanol molecules attach to the ZnO surface vertically. Ethanol coverage A_E can be presented as:

$$A_E = N \times \pi r^2 \tag{4}$$

where N indicates the number of ethanol molecules adsorbed on ZnO, which can be determined from the mass changes:

$$N = \frac{\Delta m \times N_r}{M_{\text{ethanol}}} \tag{5}$$

By combining eqs 4 and 5, we can roughly estimate the surface coverage of the films as:

$$A_E = \frac{\Delta m N_r \pi r^2}{M_{\text{ethanol}}} \tag{6}$$

Table 1 summarizes the resulting ethanol surface area coverage of the films at 25 and 90 °C.

<table>
<thead>
<tr>
<th></th>
<th>PS25-b-P4VP25</th>
<th>PS75-b-P4VP25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (nm)</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>25 °C</td>
<td>183 cm²</td>
<td>358 cm²</td>
</tr>
<tr>
<td></td>
<td>230 cm²</td>
<td>238 cm²</td>
</tr>
<tr>
<td></td>
<td>151 cm²</td>
<td>230 cm²</td>
</tr>
<tr>
<td></td>
<td>381 cm²</td>
<td>620 cm²</td>
</tr>
<tr>
<td></td>
<td>167 cm²</td>
<td>350 cm²</td>
</tr>
<tr>
<td>90 °C</td>
<td>143 cm²</td>
<td>207 cm²</td>
</tr>
<tr>
<td></td>
<td>280 cm²</td>
<td>143 cm²</td>
</tr>
<tr>
<td></td>
<td>140 cm²</td>
<td>167 cm²</td>
</tr>
<tr>
<td></td>
<td>230 cm²</td>
<td>620 cm²</td>
</tr>
<tr>
<td></td>
<td>238 cm²</td>
<td>350 cm²</td>
</tr>
<tr>
<td></td>
<td>151 cm²</td>
<td>143 cm²</td>
</tr>
</tbody>
</table>

Figure 5 summarizes the changes in the mass and resistance as a function of the introduced ethanol pressure at room temperature and 90 °C. The results suggest that at room temperature QCM immediately responds to the introduced ethanol vapors, while there is a slight delay (∼6 s corresponding to ∼0.3 Torr) in the electrical changes of the porous ZnO sample. While QCM enables the detection of ethanol even at room temperature, the change in the resistivity of ZnO is rather noisy at room temperature (Figure 5b). However, heating the sample only up to 90 °C significantly stabilizes and increases the chemiresistive response. Interestingly, though QCM demonstrates sensitivity not only to ethanol but also to adsorption of the water vapors (Figure S2), there are no indicative changes in the resistance response of the films exposed to low pressures of water and other gases including acetone and toluene (Figure S3).

Our results suggest very promising sensitivity of the SIS-deposited nanoporous ZnO even at low temperatures, while traditional ZnO films prepared via ALD, sol–gel processing, hydrothermal synthesis, or molecular beam epitaxy usually require elevated temperatures to demonstrate a reduction in resistance. For instance, we observe the change in sheet resistance up to 1000 Ω/□ at 90 °C, which is comparable with changes in resistivity previously measured at significantly higher temperatures of 350 °C. We show that while porous ZnO films are working well when detection of both mass and resistivity changes is used to quantify the surface interactions with the reactive medium (ethanol), different strategies for the optimization of the sensing layer are likely to be required for QCM and chemiresistive detection. Thus, QCM seems to benefit from more porous structures, while we observe that the most porous ZnO films used in this study did not demonstrate the most pronounced drop in resistivity. In fact, the chemiresistive response was more pronounced in the case of ZnO films with 50% porosity. The higher temperature (90 °C) increased the response of the porous ZnO coatings to the exposure to ethanol by 37% and 122% when QCM and resistivity measurements were conducted, respectively. Therefore, an increase in the temperature promotes the interactions of the ZnO surface with ethanol molecules. The temperature not only helps to overcome the activation barrier for ethanol conversion but also improves both chemiresistive and adsorption characteristics of the ZnO surface upon exposure to ethanol.
4. CONCLUSIONS
In conclusion, we demonstrated a new synthetic approach for the design of conformal nanoporous ZnO coatings with high control over porosity, thickness, and composition. We want to emphasize that 140–420 nm thick ZnO conformal coatings were synthesized using only five SIS cycles, while the traditional ALD process would require ~1000 to 4000 cycles for the films with such thicknesses. Though the QCM results indicated low selectivity of ZnO to different vapors, the coatings demonstrated a promising chemiresistive sensitivity to ethanol vapors even at room temperature, which is attributed to the high hydrophilicity of the coatings when OH groups are present on the material surface. DFT calculations further confirmed the lowering of the energy barrier for ZnO depletion layer removal in the reducing atmosphere of ethanol when the surface of ZnO is rich in OH groups. Moreover, the termination of porous ZnO layers with –OH groups easily functionalized with different functional molecules makes them suitable for biomedical applications.44

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acsami.1c08225.

XRD analysis of the sample crystallinity and pressure conversion analysis; Figure S1, XRD analysis of the ZnO samples; Figure S2, QCM analysis of water and ethanol adsorption; and Figure S3, chemiresistive analysis of the ZnO samples upon introduction of different gases and vapors (PDF)

AUTHOR INFORMATION

Corresponding Authors

Elena V. Shevchenko – Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States; Department of Chemistry and James Frank Institute, University of Chicago, Chicago, Illinois 60637, United States; orcid.org/0000-0002-5565-2060; Email: eshevchenko@anl.gov

Diana Berman – Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, Denton, Texas 76203, United States; orcid.org/0000-0002-9320-9772; Email: diana.berman@unt.edu

Authors

Daniel Pleshek – Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, Denton, Texas 76203, United States

John Tran – Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, Denton, Texas 76203, United States

Yuzhe Li – Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, Denton, Texas 76203, United States

Asghar Shirani – Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, Denton, Texas 76203, United States

REFERENCES

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c08225

Notes

The authors declare no competing financial interest.

(22) She, Y.; Lee, J.; Diroll, B. T.; Scharf, T. W.; Shevchenko, E. V.; Berman, D. Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. *Nanotechnology* 2018, 29, No. 495703.

